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Tight-binding molecular dynamics with linear system-size 
scaling 

S-Y Qiu, C Z Wang, K M Ho and C T Chan 
Ames Laboratory and Department of Physics, Iowa State Universiiy, Ames, Iowa 50011, USA 

Received 26 May 1994, in final form 22 August 1994 

Abstract. A tight-binding molecular dynamics ("m) scheme with hear system-size scaling is 
implemented by incorporating the density-matrix electmnic-srmchlre method into tight-binding 
molecular dynamics. We demonstate that this scheme. compared to the TBW) with standard 
diagonalization methods, can work more efficiently for systems larger than a few hundnd atoms. 
We present our testing results on crystalline. amorphans and liqmd wrbon systems in order to 
establish the gmeral appligbiIQ of the scheme to systems under various physical coudiIions. 

1. Introduction 

Recently, many research efforts on electronic structure calculations have been concentrated 
on the development of algorithms with linear system-size scaling (also called o rde r4  
algorithms) [1-91. This is motivated by the fact that standard algorithms have a complexity 
that grows as the cube of the system size, and thus the use of first-principles and tight- 
binding calculations are limited to small systems. Therefore, an orde r4  algorithm, if 
it is efficient and accurate, will evidently broaden the application of first-principles and 
tight-binding calculations to a wide variety of new problems involving larger and more 
complicated systems. An additional advantage is that order-N algorithm tend to be more 
naturally adaptable to parallel computers. With an order-N scheme implemented on parallel 
machines it is expected that many simulations which were too expensive to he carried out 
previously can now be performed fairly quickly. 

The density-matrix (DM) algorithm developed by Li and co-workers [l] and by Daw [Z] 
is one of the most promising order-N algorithms for electronic structure calculations. In their 
approach, they inboduce a variational method for solving the electron density matrix. The 
method takes advantage of the locality of the density matrix in real space to achieve linear 
scaling. The approximation is made by truncating the off-diagonal elements of the density 
matrix that correspond to atomic pairs whose distances are beyond a cutoff radius Rc. The 
method becomes exact as & + CO. The solution of the variational problem involves only 
an unconstrained minimization, which may be performed by conjugategradient or other 
standard techniques. This is very well suited for molecular dynamics (m) simulations. 

In the past several years, we have developed a molecular-dynamics scheme [lo] 
that incorporates electronic structure effects into MD simulations through a tight-binding 
parametrization. In this mm approach, the covalent bonding of the material enters the 
calculations in a natural way from the underlying electronic structure, rather than through 
an ad hoc N-body potential. Unlike the Car-Paninello approach, which relies on the 
expansion of the electronic wavefunctions by plane waves 1111, the tight-binding electronic 
calculations require only a few atomic orbitals for each atom, allowing a larger number 
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of atoms and longer simulation periods to be taclded within a given computer capability. 
However, the bottleneck of the TBMD calculation is the direct-diagonalization (DD) of the 
tight-binding Hamiltonian, which scales as the cube of the system size, and thus limits the 
simulation to small systems. 

In thii paper, we report results of incorporating the DM method into the TBMD to develop 
an order-N TBMD scheme (DM-TBMD). We test the scheme on carbon system, where a well 
tested tight-binding Hamiltonian has already been developed 1121. The results obtained from 
the DM-TBMD scheme are compared with those from the direct-diagonalization method (DD- 
TBMD). We fist study the energy against volume curves for various coordinated crystalline 
structures of carbon. The purpose is to find an acceptable minimum cutoff radius Rc for the 
electron density matrix, such that the approximated results are accurate enough to compare 
with the exact eigensolution. Then, we test the DM-TBMD scheme on various carbon systems, 
crystalline, amorphous and liquid carbon, in order to establish the general applicability of 
the scheme to systems under various physical conditions. Finally, we discuss the efficiency 
of the scheme and measure the crossover point at which DM-TBMD becomes more efficient 
than DD-TBMD. 

2. DM-TBMD 

In the m m  scheme [lo, 13-15], the system is described by a Hamiltonian of the form 

where (ri] denotes the positions of the atoms (i = 1.2,. . . , N) and P;: denotes the 
momentum of the ith atom. The fist term in (21) is the kinetic energy of the ions, the second 
term is the electronic band-structure energy, Em ( IT;]) .  calculated from a parame~zed tight- 
binding Hamiltonian HTB((TI}) ,  and the third term is a short-ranged repulsive energy. , 

The tight-binding model used in the present simulation consists of an orthogonal sp3 
basis with on-site atomic energies = -2.99eV and eP = 3.71 eV and two-centre integrals 

Vssc(r) = -5.OOh(r) eV 
Vw(r) = 5.5Oh(r)eV 

Vv(r) = 4.70h(r) eV 
V,,(r) = -1.55h(r)eV 

where h(r) is a smooth function of interatomic distance. The repulsive energy is in the 
form of Ew = C, f[Xj #(rij)], where #(rij) is a painvise repulsive interaction and f is 
a functional with argument x = cj q5(rij). More details about the tight-binding model can 
be found in Ll21. The accuracy and transferability of this model have been well tested. It 
reproduces well the first-principles energy against volume curves for various coordinated 
crystalline structures of carbon. In particular, the energy curves of the linear chain (twofold), 
graphite (threefold) and diamond (fourfold) smctures are excellently described [12,16]. The 
model also describes well the elastic, vibrational and anharmonic properties of diamond and 
graphite [12], as well as the properties of more complex systems such as carbon clusters 
with sizes ranging eom 5-1 00 atoms [ 171. 

Instead of calculating ETB through the direct-diagonalization of the Hm, which scales as 
the cube of the system size, the DM method developed by Li and co-workers [l] performs the 
energy calculation through the following variational approach. The grand potential defined 
as 

'i2 = Elg - pNC = tr@(Hm - p)] (2.2) 
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is minimized with respect to the density matrix 5, where Ne is the total number of valence 
electrons in the system and p is the chemical potential. The density matrix j5 is related to 
a variational matrix p through 

where off-diagonal elements of p beyond a cutoff range are set to zero by assuming that 
p is well localized. In the appendix we give a general discussion of the density matrix 
scheme in comparison with the other order-N schemes proposed in [3-51. 

The minimization of C2 can be canied out either with conjugate-gradient or steepest- 
descent algorithms. Because of the "cation of p. the calculated total number of valence 
electrons, Ne = e[,?], will usually not be exact, even though the chemical potential p is 
fixed at the gap between the valence and conduction bands. If a system has a relatively large 
gap, such as for a system of insulators or semiconductors, the error in the calculated Ne 
can be kept small with a constant input p fixed at the gap. However, for metallic systems, 
it is difficult to have a convergence of Ne while fixing p in the simulation. In order to 
have a converged Ne, p also needs to be calculated iteratively at each hm step. Here we 
propose a two-stage steepest-descent minimization algorithm, where the chemical potential 
p is automatically adjusted to the correct value by imposing the condition that Ne is equal 
to the total number of valence electrons. 

At each iteration of steepest-descent minimization, our algorithm for the line 
minimization can be divided into two stages. In the first stage, the l i e  minimization is 
carried out along the direction of -VpC21p=pz = A,, where explicitly 

where j5" and pn are the density matrix and the chemical potential at the nth iteration, 
respectively. Along that search direction with step-size A, we have the variational matrix 
at the (n + 1)th iteration after the first-stage line minimization 

( ~ l ) n + l  = ~n + 1-4, (2.6) 

where the value of A can be found by putting (2.6) into (2.2), and thus obtaining the grand 
potential as a third-order polynomial of I 

( S 2 1 ) ~ + 1  = CO + CIA + czA2 + c3h3 (2.7) 

where the four coefficients are related to the parameters at the nth iteration through the 
following equations: 

CO = S2, (2.8) 

~1 = -=[A:] (2.9) 

cz = tr[3A,ZH - 2A,2(Hpn + p,H) - 2AnpnA,H] 

c3 = -2tr[A:H] (2.11) 

(2.10) 

where H 
can be easily calculated. 

HTB. Now the value of h (denoted as A d n )  at which (S2~)~+1 is at the minimum 
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Since after the first-stage line minimization the number of electrons calculated by 
Ne = tr[(&).+ll will generally not be equal to the actual number of valence electrons 
in the system, we now adjust the chemical potential p at the second stage of the line 
minimization to eliminate the electron number discrepancy. We adjust p dong the direction 
of -VpNclp=pn = E. with stepsize Sp; the density matrix at the (n + 1)th iteration after 
the second-stage line minimization is then 

( m ) n t l =  ~n + h i d n  + (2.12) 

where the value of Sp can be found by putting @&+I into the equation tr.[(jj~)~+l] = N y t  
to form a cubic equation of Sp: 

(2.13) 

where N F t  is the exact value of the total number of valence electrons, and the four 
coefficients are related to the parameters at the nth iterations through the following equations: 

do + di6p + dzSp2 f d38p3 = Nemt 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where (BI).+I = - V p N e l p = ~ l ) N + , .  Among the three roots of the cubic equation, we find it 
convenient to use the physical root with the smallest absolute value as the solution (denoted 
as &,,in). Hence, by combining the above two stages, we obtain the variational matrix 
pn+l at the (n + 1)th iteration to be 

(2.18) Pn+l = Pa + LimiaAn f SfimioBn 

and the new chemical potential at the (n + 1)th iteration is 

(2.19) 

In summary, for the above two-stage steepest-descent minimization algorithm, we first 
minimize S-2 along the direction of -VpS-2, and then adjust p along the direction of -VpNe, 
so that the density matrix at each iteration is always on the surface of trw] = NFmt. 

The Hellmann-Feynman force can be calculated through a derivative of the grand 
potential Q with respect to a parameter 6 (an atomic coordinate, for example) at fixed 
P: 

but the first term vanishes at the variational solution, so that the force is given by 

(2.21) 

The DM method calculates approximately the electron band-structure energy E ,  and 
the corresponding force in an approach that scales linearly with the system size. The 
approximation becomes exact when no truncation is performed on the variational matrix p .  
Further details about the DM method can be found in [1,2]. 
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3. Simulation and results 

3.1. Energy against volume curves 

Using the DM method, we first need to reproduce the energy against volume curves €or 
various crystalline shuctures of carbon calculated by direct diagonalization of the tight- 
binding Hamiltonian. In order to obtain an order-N scheme, an appropriate cutoff radius 
R, has to be chosen for the variational density matrix p .  However, unless a large enough 
Rc is chosen, or Rc is scaled with the volume, a constant cutoff radius will give rise to 
discontinuities in the energy against volume curves. This is because, for a constant Rc. 
the number of atoms that 'see' a particular atomic site is larger for a smaller volume than 
for a larger volume, and thus energies are calculated with more accuracy in the former 
case. In bm simulations at high temperature, such energy discontinuities can also occur 
because diffusion of the atoms can bring them into or out of Re. Since choosing a large 
Rc is inefficient, and varying Rc is impractical in MD simulations, we shall use a constant 
number Nc, the number of closest neighbours for each atom, whose corresponding off- 
diagonal elements of the variational density matrix are non-zero. 'Ihat is, for each atom, we 
index all other atoms in incremental order of their distance to that central atomic site. We 
then choose a cutoff number Nc, and for the first Nc neighbours in the list we choose their 
corresponding offdiagonal elements of the matrix p to be variational parameters, and set all 
the other off-diagonal elements to zero. In this way, the same accuracy can be achieved for 
both small and large volumes, and a smooth energy against volume curve can be obtained. 

t 

-10 1 1 1 , 1 1 1 I I I  , , l ! , l I  
1.2 1.4 1.6 1.8 2 2.2 

Nearest Neighbor Distances (A) 
Figure 1. Cohesive energy against nearest-neighbour atomic dislance curves of the diamond, 
graphire, linear chain, SC, BCC, HCP and Px Sf l lCNTes .  Full and broken curyes show the results 
from DD and OM CdCulatiOns, reSpeC!iVdy. 
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In figure 1 we show energy against volume curves for various crystalline structures 
of carbon: diamond (64, 43). gaphite (80, 44), linear chain (80, 46), simple cubic (sc) 
(64, 41), face-centre cubic (FCC) (64, 45) body-centre cubic (BCC) (54, 46) and HCP (72, 
43) where, in the parentheses, the first number is the number of atoms per unit cell, and 
the second number is the cutoff neighbours N,, which include complete atomic shells of 
crystalline st~ctwes. Only the r point is used for the electronic structure calculation, and 
a cubic periodic boundary condition i s  imposed for each system. As can be seen from 
figure 1, the DM method at those cutoff neighbours N ,  accurately reproduces the energy 
against volume curves calculated by the DD method, especially for the diamond, graphite 
and linear chain cases. The relatively poor fit for the SC, FCC, BCC and HCP systems is due 
to the fact that these are metallic systems, and thus a larger cutoff Nc is required in order 
to achieve the same good results as for the diamond, graphite or linear chain systems. 

In what follows, we perform a DM-TBMD simulation on carbon using various system 
sizes and densities. Based on the above calculation, we shall use a constant Nc (= 46) for 
the variational matrix p cutoff. In the MD simulation, the energy discontinuity will not be 
completely eliminated. T h i s  is because, during the simulation, not only the actual atoms 
included in the list of the 6rst Nc neighburs will vary during the simulation, the actual 
number Nc for each atom cannot be kept the same. The first problem will appear when 
atoms diffuse, and the second problem is due to the symmetry requirement of the density 
matrix. For example, suppose atom 2 is in the list of the first N, neighbours of atom 1, 
while atom 1 is not in the list of the first Ne neighbours of atom 2, which means that the 
4 x 4 matrix block plz is non-zero while p21 is zero. Since p is symmetric, atom 1 has 
to be added into the neighbour list of atom 2 to make non-zero; thus atom 2 will have 
Nc + 1 neighbours in its list. This example tells us that, during the MD simulation, at best 
we can only use the same N, for each atom not as the actual size but as the minimum size 
of its neighbour list. We observed in our calculation that thii constant-minimum-N, cutoff 
is still superior to the constant-& cutoff as far as energy conservation is concerned. 

3.2. Crystalline carbon 

Using the DM-TBMD method, as described in the previous section, we first performed a 
simulation on the ideal diamond structure using 64 and 216 atom unit cells of carbon with 
cubic periodic boundary conditions. Only the r point is used for the electronic structure 
calculation. Our simulation was initiated with all atoms arranged in the ideal diamond lattice 
and giving each atom a random distortion, which is equivalent to a temperature of about 
400 K. The equations of atomic motions were solved by a fifth-order predictor-comector 
algorithm with a timestep of 0.7 x s. The minimum Nc for each atom is set to 46. 
We use the steepest-descent algorithm for the minimization of S2 in (2.2), with the chemical 
potential ~r. fixed at 3.0eV in the middle of the gap between the valence and the conduction 
band. The minimization tolerance 5 is set to IO-', where 5 is defined as r = IAS2J.Qnl, 
and A.Qn = an - Q.-I, the difference of S-2 between the nth and (n - 1)th steepest-descent 
iterations. We found that the total number of valence electron trIj71 is quite close to the 
actual value at the present cutoff, and the error can be kept small in the entire simulation, 
as shown in figure 2(d). 

The initial variational electron density matrix p at the first MD step can start fiom scratch, 
as suggested by Li and co-workers [l]: 0.5 for diagonal elements and zero for off-diagonal 
elements. In order to speed up the convergence of the steepest-descent minimization for the 
subsequent MD timesteps, the initial density matrix can be predicted by extrapolating forward 
from the electronic configurations of previous timesteps. A second-order extrapolation is 
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Figure 2. IBMD simulation for crystalline carbon for the period 0.21 ps (3W MD timesteps) 
with conjugate gradient tolerance T = lo-$ for system sizes of 64 and 216 carbon atoms: (a) 
potential energy aad (b) system tdal energy. 
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where I&)} are the ionic coordinates at timer., with n being the number of MD timesteps, LY 
and ,3 are fitted parameters, and the prime indicates an initial trial density matrix, as opposed 
to the fully converged density manix p((r(tn+,]). This is inspired by the work of Payne and 



light-binding molecular dynamics with linear system-size scaling 9161 

co-workers 1181 and Arias and co-workers [19]: if the initial electronic configuration can 
be moved closer to the correct instantaneous ground-state configuration, less computational 
effort is required to converge it to its exact ground state. 

Although the parameters a! and p can be found by minimizing the difference of the trial 
ionic coordinates 

t r ' (~+l)I  = tr@d +a![r(tn) - &-I)]+ p[r(tn-d - r(tn-d11 (3.2) 

with the actual ionic locations {r(tn+l)} as suggested by Arias and co-workers [191, we have 
found that it is always more efficient to simply choose a! = 2 and p =  -1. This is arrived 
at by considering the Taylor expansion of {r(znJ] and [r(&-z)] around [r(tn)]: 

(3.3) 

(3.4) 

By substituting (3.3) and (3.4) into (3.2) and including only up to second order, we obtained 
the above result. Similarly, for the first-order extrapolation, we can simply choose a! = 1 
and p = 0, and for the zero-order (Y =*@ = 0. 

For the DM-TBMD simulation on crystalline carbon we have found that, if we use first- 
order or zero-order extrapolations, the total energy of the system constantly leaks. This 
is due to the accumulation of systematic errors in the steepest-descent minimization, since 
for any finite tolerance the fmt term of (2.10). aQ/ap, is not exactly zero. It is possible 
to conserve the total energy to a very high degree of precision either with a sufficiently 
small tolerance for the steepest-descent minimization (r < or by starting from 
scratch at each MD timestep in order to eliminate the error accumulation. Although the 
latter approach still gives an error in the force calculation depending on the choice of 
tolerance, the error tends to be random rather than systematic, so that the energy fluctuates 
rather than leaks constantly. However, we cannot reach maximum efficiency with either 
method. Nevertheless, for this particular system of crystalline carbon, we found that the 
system energy increases monotonically if we use the second-order extrapolation, while a 
first-order extrapolation causes the energy to decrease monotonically. Thus, by alternately 
using first-order and second-order extrapolations, we were able to achieve conservation of 
the total energy of the system using a relatively large tolerance for the minimization process 

To demonstrate the quality of the results we show, in figure 2(a), the evolution of 
potential energy (ETB + Ercp), and in (b) the total energy of the system, against simulation 
time for a tolerance of As can be seen in figure Z(a), the evolution of potential energy 
calculated from the DM-TBMD method agrees remarkably well with that from the DD-TBMD. 
Although the system total energy calculated from DM-TBMD is not constant, it fluctuates 
around a constant value, which is acceptable for MD simulations. In figure 2(c), we show 
the number of steepest-descent iterations against simulation steps. As can be seen, except 
for the first step, which takes eighteen iterations to converge from scratch, the average 
iteration number for subsequent timesteps is around two. The error for the total number 
of valence electrons is small, less than 0.003% for the system of 64 atoms and less than 
0.02% for 216 atoms, as shown in figure 2(d). The crossover point, at which the DM-TBMD 
scheme becomes more efficient than DD-TBMD, is around 60 atom, as shown in figure 3. 

Here, we report the timing of our program measured on an lBM 6000/560 workstation, 
for the purpose of performance comparison with the implementation of the density matrix 

(r = 10-5). 
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10 MD Steps for 
Crystalline Carbon 

60.031 
Direct Diagonalization 

(N’ scaling) 

40.00 Variational Density - - 

Matrix Method 
(Linear scaling) - 

600 
Number of Atoms 

Figure 3. The measure of mssover point between the DU-TBMD and DD-IBMD method. ?be 
dam are collected f” the simulation of aystalline carbon over IO MD timesteps for a system 
size of 64,216 and 512 carbon atoms per unit cell. 

method by other groups. If we use a constant A in the steepest-descent minimization, 
we reach a speed of 0.056 (second per atom per iteration). If we calculate optimal Amill 
at each steepest-descent minimization iteration, we reach a speed of 0.090 (second per 
atom per iteration), which is the calculation we performed for the crystalline carbon system. 
Finally, if we calculate both Amin and Bp- at each steepest-descent minimization iteration 
as described in (2.18), we obtain a speed of 0.110 (second per atom per iteration), which 
is the calculation we shall perform in the following for the amorphous and liquid carbon 
systems. 

3.3. Amorphous carbon 

After the success of the DM-TBMD technique on crystalline carbon, as shown in the previous 
section, we applied the scheme to a more disordered system, an amorphous carbon structure. 
The amorphous carbon is generated by quenching highdensity high-temperature liquid 
carbon through TBMD simulations [ZO]. It has a density of 3 . 5 0 g ~ m - ~  with 216 carbon 
atoms per unit cell and cubic periodic boundary conditions imposed. The DM-TBMD 
simulation is performed in the same way as for the crystalline case, except that (i) the 
temperature is now 700K, (ii) the timestep is 1.05 x (iii) we use the two-stage 
steepest-descent minimization to adjust the chemical potential p at each step in order to 
obtain the actual number of valence electron, and (iv) the tolerance for the steepest-descent 
minimization is set to The parameters in (i) and (ii) are chosen to be the same as 
in [20]. The two-stage steepest-descent algorithm is used here because, if we use fixed p 
in the simulation, we cannot obtain a well converged N. as in the crystalline carbon case. 

As can be seen in figure 4, the DM-TBMD scheme also works quite well for amorphous 
carbon. Though the potential energy against simulation time does not match the exact 
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solution as well as the crystalline carbon case, it can be improved by increasing the cutoff 
range, improving the minimization tolerance and reducing the MD timestep. The total energy 
of the system fluctuates around a constant value, which is conserved quite well in the entire 
simulation. The average number of iterations for the steepest-descent minimization is around 
seven, and the crossover point is around 120 atoms. 

3.4. Liquid carbon structure 

In our previous work using DD-TBMD [16], we performed extensive simulations on liquid 
carbon and showed that at low density (2.0gcmW3) the liquid carbon is metallic and 
dominated by twofold- and threefold-coordinated atoms. In this section, we want to 
demonstrate that the DM-TBMD scheme can closely reproduce the DD-TBMD results for liquid 
carbon, a more disordered system than both crystalline and amorphous carbon. 

We performed the simulations with a density of 2.0gcmV3 using 64 atoms per unit cell 
and a cubic periodic boundary condition. Only the r point is used for the electronic structure 
calculation, and the cutoff neighbour number Nc for the variational density matrix is set 
to 46. The equations of atomic motions were solved by the fifth-order predictor-corrector 
algorithm with a timestep of 0.7 x After 3.5ps of thermalization at 5 W K ,  we 
released the temperature control and ran another 1 . 4 ~ s  using both DM-TBMD and DD-TBMD 
schemes. For metallic systems, it is difficult to guess p correctly to give the correct total 
number of valence electrons; we use the two-stage steepestdescent minimization algorithm 
with p adjusted at each iteration to obtain the actual number of valence electrons. The 
results of pair-correlation functions and atomic distributions obtained from the DM-TBMD 
and DD-TBMD schemes are compared in figure 5(a) and table 1. These results show that 
the DM-TBMD scheme reproduces quite well the results of DD-TBMD. To further demonstrate 
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the agreement of results from the two schemes, we have plotted in figures 5(b), 5(c) and 
5(dJ the partial radial distribution functions and bond-angle distribution functions of various 
coordinafed atoms, respectively. 

Since liquid carbon is a more disordered system than crystalline and amorphous carbon 
structures, the evolution of system potential energy calculated from DM-TBMD cannot match 
what is obtained from the DD-TBMD, as can be seen in figure 6. In fact, their trajectories 
in phase space Begin to diverge at about 50 MD timesteps. This is not surprising, since 
for chaotic dynamics any two schemes with a slight difference will lead to a divergence 
over a long enough time period. This can be clearly seen in figure 7(a), where the liquid 
carbon system is slightly distorted (broken curve), and its trajectory using the same DD-TBMD 
scheme begins. fo diverge from the original one at around 60 MD steps. For comparison, 
we also show in figure 7(b) the corresponding crystal carbon case, where the same amount 
of distortion is made, and its trajectory c&n still follo\u quite well, as discussed previously. 
Moreover, as shown in figure' 6 (thick doEd curve), if we interrupt the DM-TBMD at the 
150th timestep and then continue it with the ionic configuration from DD-TBMD at that point, 
the results from. the two schemes begin to diverge again after about 50 MD timesteps of 
quite good agreement. NeverfheIess, we showed that this divergence does not affect the 
timeaveraged physical properties of the system. In order to achieve conservation of the 
total energy of the s y s t e ~  we found' that, if we use the extrapolation technique described 
above for the prediction of the trial. density mahiv for the next MD timestep, we have to use 
a very small  tolerance for the steepest-descent minimization (z = IO-"'). However we also 
found that, if we simpIy use the scratch density matrix for the starting point for each MD 
timestep, energy conservation can be achieved fairly well with a relatively large tolerance of 
t = 109 (the average iteration number is around 25). which turns out to be more efficient. 
The above results arc obtained using the latter approach. The crossover point is around 230 
atoms. 

Table I. Ratios of various cnordhaled atom of liquid carbon under density 2.Ogcnr3 
calculated fiom DD-TBMD and DM-"40; ns is the average cmrdination number. 

Scheme Onefold (96) Twofold (%) "efold (%) Fourfold (%) nE 

D P l B M D  3.85 40.85 50.75 4.54 2.56 
DM-TBMD 3.62 42.63 49.59 4.15 2.54 

4. Discussion and conclusion 

In this paper we have demonstrated that the DM-TBMD scheme with linear system-size 
scaling works remarkably well for various carbon systems. For crystalline and amorphous 
carbon shuctures, the DM-TBMD can reproduce weIl the evolution of system potential energy 
calculated &om the DD-TBMD. For liquid carbon, the DM-TBMD scheme can reproduce the 
atomic coordination number and pair-correlation functions from the DD-TBMD. 

Efficiency and accuracy are always a tradeoff that one has to balance. In the DM-TBMD 
scheme this tradeoff is related to two parameters: the cutoff range for the variational density 
matrix and the tolerance for the steepest-descent minimization. A large cutoff range and 
small tolerance give high accuracy but low efficiency. Thus one should choose the smallest 
cutoff range and the largest tolerance to produce the most efficient MD simulation while still 
being able to obtain the same physics as the DD-TBMD scheme. 
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The smallest possible cutoff range can be estimated by studying the phase diagram 
of energy against volume curve, or in addition by studying the bulk modulus and optical 
phonon [l]. For the carbon systems we studied, we chose a cutoff range up to the fifth- 
neighbour shell of diamond structure, namely N, = 46, at which the DM scheme can 
reproduce well the energy against volume c w e  from the DD method. In the MD simulation 
we found that it is better to keep a constant N, than to keep a constant R, in order to reduce 
an abrupt change of the number of non-zero off-diagonal elements of the density matrix, or 
equivalently reduce the effect of a large energy discontinuity from one MD timestep to the 
other. 

A good criterion to choose the largest possible tolerance is to check the conservation 
of the total system energy and other relevant physical properties. It is also related to the 
choice of the starting variational density matrix for minimization at each MD hes t ep .  The 
starting density matrix for each MD timestep can always be predicted by the extrapolation 
technique of (3.1). which can dramatically save the computational effort. However, using 
such a prediction for the starting density matrix the error tends to be systematic and we 
found that there is error accumulation from each M!J step, which leads to a consistent energy 
leakage or gain. Although by decreasing the tolerance the degree of leakage or gain of the 
total energy can be reduced, we found that the non-conservation still persist even up to 
5 = To eliminate the error accumulation in the MD simulation, one can either use 
the technique of alternating different orders of extrapolation, if they correspond to error 
accumulation in different directions, or use a ‘neutral‘ scratch density mamx that tends to 
give random errors and thus does not accumulate errors systematically. For crystalline and 
amorphous carbon, they correspond to the first case, where the total energy consistently 
leaks by using the first-order extrapolation and consistently gains by using the second-order 
extrapolation. Thus, by using these two kinds of extrapolations alternately, we manage to 
conserve the system energy while using a relatively large tolerance. However, the liquid 
carbon corresponds to the second case, where we found that we have to use the scratch 
density matrix as the starting point for minimization at each m timestep in order to achieve 
conservation of system energy. For the crystalline and amorphous carbon we studied, by 
choosing 5 = 10” and t = we obtained a crossover at around 60 and 120 atoms, 
respectively. For liquid carbon, by choosing 5 = but with a scratch density matrix for 
each MD timestep, we obtained a crossover at around 230 atoms. 

The formulation and techniques developed in this paper can also be applied to other 
schemes with linear system-size scaling, such as the localized-orbital method [3,4]. We 
have carried out similar calculations using the localized-orbital method and will present the 
results and comparison with the DM method elsewhere. 

As mentioned in section 1, the linear scaling and natural parallelism have allowed the 
density matrix method to be more efficiently implemented on parallel computers. At the 
time of submission of this paper, we successfully implemented the DM-TEIMD scheme on 
an Intel Paragon. Whie optimization is still ongoing, extrapolation from current work 
indicates that practical simulations of loo00 atoms systems should be easily achievable on 
the 512-node XP/S-35, taking an estimated 17 h for lo00 timesteps. As the communication 
capabilities of the Paragon improve, smaller systems may be spread across all 512 nodes 
to allow for long simulation times, such as a 1ooO-atom simulation for loo00 timesteps 
taking the same 17 h. This should enable us to perform a wide variety of new problems 
requiring the study of such a large system and perform long simulations. 

* 
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Figure 6. The evolution of pokntial energy against simulvion time for liquid carbon, when the 
heavy brolren curve represenfs the DM-TBMD result sQlfinz from the c~&uation of DD-IBMD 
at the 150th timesap. 
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Appendix. A generalized density-matrix formulation 

In this appendix we derive a generalized density-matrix formulation for electronic-smcture 
calculations for tight-binding models, and show that several O(N) schemes proposed 
recently can be discussed within a unified fiamework. Let us consider a tight-binding 
model with an N x N Hamiltonian matrix H, and an 'energy' functional defined by 

(AI) Q = trIf@)(H - J ) I  + qM 

where I is the identity matrix, M is the number of occupied bands in the system (M < N) 
and q is a real number to be specified later. The operator 6 is a sum of projectors defined 
by 
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where the trial wavefunctions I&) are linearly independent but not necessarily orthogonal to 
each other (we will assume that they are normalized since normalization is always a trivial 
procedure), and f(p) is a functional of the operator B .  Thus R is an implicit functional 
of ($1. We will show that for certain proper choices of the function f ,  R[[@}] can attain 
a minimum value of E:, 6;. where E; are eigenvalues of the Hamiltonian H ,  when Q is 
minimized by performing an unconstrained minimization with respect to {@I. 

Since p is a Hermitian operator, we can always write 

where yi and lei) are the eigenvalues and eigenvectors of p ,  respectively. From (AZ), it 
is easy to see that yi are the eigenvalues of the overlap matrix Sij = and hence, 
yi b 0. Since A defined by (A2), only spans an M-dimensional subspace, we may write 

that is, it will have N - M eigenvalues with a zero value. 
Now for any operator A, we can Write 

N 
@[fC?)AI = Cf(yi)(JrilAl@i;.). 

i=l 

Hence, we have 

~2 = W ( i N H  - 7 7 0 1  f V M  
N 

= Cf(~i)(WiIHlei) - 77) f I ~ M .  
i=l 

Now suppose that we require the function f to satisfy the condition f(0) = 0, then 

n=Cf(n)((*iI~Il/li)-~)+77~ 
M 

i=l 

Since Hi; 2 6;. where 6; are the eigenvalues of the Hamiltonian H, we have 
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where P 2 0 (P = 0 when I@[) spans the same subspace as the eigenvectors of X). Now 
let us choose an q > emax (where emax is the largest eigenvalue of X), then H;i -q = Ni < 0 
for all i ,  then 

M M 
n - E; = P + C ( f ( Y i )  - 1)N;. 

i=l i=l 

If we choose f ( x )  such that f(1) is an absolute maximum, then it is quite obvious that 
52 will attain a value of x:, E;. where it is minimized (without any further constraints) 
by varying the (@). The minimization can be performed by steepest-descent or conjugate 
gradient algorithm. We note that (A3) is only a schematic representation, thus we do not 
need to diagonalize the J matrix at any step. The simplest function satisfying the conditions 
that f ( 0 )  = 0 and that f(1) is an absolute maximum, is 

(AW 

This is basically the formulation used by Mauri and co-workers [3], and Ordejon and co- 
workers [4], cast in a density matrix formulation for a tight-binding model. There are. of 
course infinitely many possible choices for f ( x ) ,  with (A12) being the simplest. 

So far, we have assumed that we are. constructing jj from a set of trial wavefunctions 
I@}, i.e. jj = E:, I@i) ( @ ! I .  Now suppose that we do not even specify the trial wavefunction 
[@} and use the elements of jj as our basic variables; then we still have (Al) and we can 
still write jj as in (A3), but yi now are not necessarily positive-definite and they may all be 
non-zero (in the previous case, y; = 0 for i = M + 1, . . . , N ) .  Then, we can rewrite (A6) 

2 f(x) = 2 x  - x  . 

as 

Now if we require that (i) q is the chemical potential of the system, (ii) f(0) is the absolute 
minimum for f ( x ) ,  (iii) f(1) is the absolute maximum for f(.x), (iv) f(0) = 0 and (v) 
f(1) = 1, then 52 can achieve a minimum value of xEl by varying jj. This can be easily 
seen from (A13) that, at the minimum of a, the first term will drive f ( y i )  = f(1) = 1 
since Hii - q < 0, and the third term will drive f ( ~ )  = f ( 0 )  = 0 since H;; -‘q > 0. 
Altematively, if we change condition (i) to be f(yi) =. M, then Q can achieve the 
same minimum value, while q will be driven to the chemical potential of the system. This 
corresponds to the steepest-descent algorithm described in section 2. 

We note that conditions (ii) and (iii) are very difficult t6 satisfy simultaneously by simple 
polynomials, so we relax the condition that f ( 0 )  and f(1) become the (local) minimum 
and maximum within a specified range of the eigenvalue spectrum { y } ,  and we hope that 
when we are minimizing S2 by changing the elements of jj, the eigenvalues of jj will stay 
within the specified range. A simple function that satisfies this condition is 

f ( x )  = 3x2 - 2 x 3 .  ( ~ 1 4 )  

This function, as also shown in (2.3), is the essence of the density matrix method proposed 
by Li and co-workers [l] and Daw [2]. In this case, xE1 q is just a local minimum of a. 
The absolute minimum is actually negative infinity, and hence there is always the possibility 
of ‘runaway’ solutions. 
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The method proposed by Wang and Teter [5] is also very similar to what we have 
discussed above. They propose to minimize 

This is equivalent to 

n = tT[PH] + q t r [ / ? Z  - /?I (A161 

where ,5 = xEl [&)(@;l, while (AI) with the choice of f ( x )  = 2x - x z  becomes 

n = *[/?(H - V I ) ]  + VM + 7 p t P 2  - /?I + tr[(P - P2)HI. (-417) 

Since at the minimum of the above equation, h@-) = M, basically the formulation of 
Wang-Teter missed the fourth term of (A17). We note that (A17), as a special case of (AI) 
with a certain ‘proper’ choice of f ( x ) ,  will give us the ‘exact’ result of S2 = E:, E; for a 
tight-binding model, but the method of Wang-Teter (equations (A15) and (A16)) will not. 
When we minimize the Wang-Teter functional with respect to {@), the functional will try to 
find a compromise between minimizing the band energy t r ( j H )  and enforcing idempotency 

= ,Z, and the final result in fact will depend on the choice of q. 
In our discussions we do not limit the range of /? (or {4}) in real space. In practice, 

such truncation is essential to make these algorithms scale linearly with system si, There 
is of course always a truncation error. which needs to be balanced with the efficiency of 
the method. 
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